Simultaneous optimisation of earwig hindwings for flight and folding

نویسندگان

  • Julia Deiters
  • Wojciech Kowalczyk
  • Tobias Seidl
چکیده

Earwig wings are highly foldable structures that lack internal muscles. The behaviour and shape changes of the wings during flight are yet unknown. We assume that they meet a great structural challenge to control the occurring deformations and prevent the wing from collapsing. At the folding structures especially, the wing could easily yield to the pressure. Detailed microscopy studies reveal adaptions in the structure and material which are not relevant for folding purposes. The wing is parted into two structurally different areas with, for example, a different trend or stiffness of the wing veins. The storage of stiff or more flexible material shows critical areas which undergo great changes or stress during flight. We verified this with high-speed video recordings. These reveal the extent of the occurring deformations and their locations, and support our assumptions. The video recordings reveal a dynamical change of a concave flexion line. In the static unfolded state, this flexion line blocks a folding line, so that the wing stays unfolded. However, during flight it extends and blocks a second critical folding line and prevents the wing from collapsing. With these results, more insight in passive wing control, especially within high foldable structures, is gained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hindwings are unnecessary for flight but essential for execution of normal evasive flight in Lepidoptera.

In Lepidoptera, forewings and hindwings are mechanically coupled and flap in synchrony. Flight is anteromotoric, being driven primarily by action of the forewings. Here we report that lepidopterans can still fly when their hindwings are cut off, a procedure reducing their total wing surface, on average, by nearly one half. However, as we demonstrate by analysis of three-dimensional flight traje...

متن کامل

Unusual Phase Relationships between the Forewings and Hindwings in Flying Dragonflies

Flying insects can generally be divided into two groups: 'primitive' orders with forewings and hindwings that move independently (for example, Odonata, Orthoptera, Isoptera) and more 'advanced' orders with wings that are functionally one pair, with the foreand hindwings in contact so as to function as one wing (for example, Hymenoptera, Lepidoptera, Homoptera), or with only one pair of wings th...

متن کامل

Effects of Ipsilateral Wing-Wing Interactions on Aerodynamic Performance of Flapping Wings

Dragonflies are masters of using the ipsilateral wing-wing interaction for different kinds of flying modes. It has been discovered that the phase difference between ipsilateral forewings and hindwings plays important role on wing aerodynamic performance. In the current study, we continue our research of a modeled dragonfly in slow flight (Liang and Dong (2009)) by varying the phase difference b...

متن کامل

Summation of visual and mechanosensory feedback in Drosophila flight control.

The fruit fly Drosophila melanogaster relies on feedback from multiple sensory modalities to control flight maneuvers. Two sensory organs, the compound eyes and mechanosensory hindwings called halteres, are capable of encoding angular velocity of the body during flight. Although motor reflexes driven by the two modalities have been studied individually, little is known about how the two sensory...

متن کامل

Automatic tuning of a behavior-based guidance algorithm for formation flight of quadrotors

This paper presents a tuned behavior-based guidance algorithm for formation flight of quadrotors. The behavior-based approach provides the basis for the simultaneous realization of different behaviors such as leader following and obstacle avoidance for a group of agents; in our case they are quadcopters. In this paper optimization techniques are utilized to tune the parameters of a behavior-bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016